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Abstract. Poor efficiency is a typical problem of nonlinear diffusion filtering, when
the simple and popular explicit (Euler-forward) scheme is used: for stability reasons
very small time step sizes are necessary. In order to overcome this shortcoming, a
novel type of semi-implicit schemes is studied, so-called additive operator splitting
(AOS) methods. They share the advantages of explicit and (semi-)implicit schemes
by combining simplicity with absolute stability. They are reliable, since they sat-
isfy recently established criteria for discrete nonlinear diffusion scale-spaces. Their
efficiency is due to the fact that they can be separated into one-dimensional pro-
cesses, for which a fast recursive algorithm with linear complexity is available. AOS
schemes reveal good rotational invariance and they are symmetric with respect to
all axes. Examples demonstrate that, under typical accuracy requirements, they are
at least ten times more efficient than explicit schemes.

1 Introduction

Although nonlinear diffusion filters are quite popular, their practical appli-
cability suffers from the fact that the widely-used explicit (Euler-forward)
discretization is only stable for very small time steps.

This problem is addressed in the present paper by proposing schemes which
are separable and which do not suffer from any time step size restriction
since all stability-relevant terms are discretized in an implicit manner. The
backbone of these schemes is the Thomas algorithm for solving a tridiagonal
system of linear equations. It is fast, stable and requires only a few lines
programming work. Its forward and backward substitution steps constitutes a
recursive scheme with a causal and an anticausal filter. The presented schemes
can be implemented in arbitrary dimensions, they create discrete nonlinear
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diffusion scale-spaces, and their computational and memory requirements are
linear in the image size.

As a prototype of a well-founded nonlinear diffusion filter! we focus on AOS
schemes for a spatial regularization of the Perona-Malik filter [17] due to
Catté, Lions, Morel and Coll [4].

The present paper is organized as follows:

Section 2 gives a brief survey on the nonlinear diffusion model (which will
shall call Catté equation henceforth). In Section 3 we first investigate the
limitations of explicit and semi-implicit schemes as a motivation to study
AOS schemes. Then the structure of AOS is explained, and it is sketched
why they create a discrete nonlinear diffusion scale-space. We shall observe
that AOS schemes can be reduced to one-dimensional discrete diffusion pro-
cesses leading to tridiagonal systems of linear equations. They are solved in
a recursive way by the Thomas algorithm, a special version of the Gaussian
elimination scheme. Algorithmic features and complexity estimates will be
presented. In Section 4 we evaluate the results by checking the performance
of AOS schemes with respect to rotational invariance and accuracy. This en-
ables us to propose suitable time step sizes and to analyse the efficiency gain
in comparison to the widely-used explicit scheme. We conclude the paper
with a summary in Section 5.

Due to space limitations only the main ideas can be presented. Proofs and
full details can be found in [21].

Related work. This work has been influenced by a number of related ap-
proaches which shall be mentioned here.

Implicit splitting-based approaches have been proposed for linear diffusion
filtering in [8,3] and also in [2] where their realization as a recursive filters
is suggested. Impressive results on improved efficiency by means of recursive
filtering may be found in [5], and the close relation between recursive filters
and linear scale-space has been clarified in [15]. Semidiscrete analogues of the
linear diffusion scale-space can be found in [13].

In the nonlinear diffusion field one can find several alternatives to the con-
ventional two-level explicit finite-difference scheme, for instance three-level
methods [6], semi-implicit approaches [4], multigrid methods [1], finite ele-
ment techniques [12], numerical schemes with wavelets as trial functions [6],
and spectral methods [6]. Also hardware proposals for nonlinear diffusion
filtering have been made, see e.g. [7].

Semi-implicit algorithms have also been proposed for other nonlinear PDEs
in image processing, for instance for mean curvature motion [2].

2 The Continuous Filtering Process

In the m-dimensional case the filter of Catté, Lions, Morel and Coll [4] has
the following structure:

! Overviews of other methods can be found in [9,20].



Let 2 :=(0,a1) X .... X (0,am) be our image domain and consider a (scalar)
image f(z) as a bounded mapping from (2 into the real numbers IR. Then a
filtered image u(z,t) of f(x) is calculated by solving the diffusion equation
with the original image as initial state, and reflecting boundary conditions:

O = 3 0ui (9(1Vuel?) Bey) 1)
=1

u(z,0) = f(z), @

6nu|89 = 07 (3)

where n denotes the normal to the image boundary 012.

The “time” t is a scale parameter: larger values lead to simpler image repre-
sentations. The whole embedding of the original image into a one-parameter
family of simplified images is called scale-space, a concept which has been in-
troduced to image processing by Taizo Iijima more than 30 years ago [11,22].
In order to reduce smoothing at edges, the diffusivity g is chosen as a de-
creasing function of the edge detector |Vu,|, where Vu, is the gradient of a
Gaussian-smoothed version of u:

Vuy := V(Ks *u), (4)

1 |=?
KU = Wexp (—?) . (5)

We use the following form for the diffusivity:

1 (s<0)
g(s) = { 1— exp (Zss/i)lf) (S > 0) (6)
For such rapidly decreasing diffusivities smoothing on both sides of an edge
is much stronger than smoothing across it. As a result, the gradient at edges
may even be enhanced, see [17] for more details. A plays the role of a con-
trast parameter: Structures with |Vu,| > X are regarded as edges, where the
diffusivity is close to 0, while structures with |Vu,| < A are considered to
belong to the interior of a region. Here the diffusivity is close to 1. Thus, we
have a selective smoothing process which prefers intraregional smoothing to
interregional blurring. After some time it leads to segmentation-like results
which are piecewise almost constant.

The parameter ¢ > 0 makes the filter insensitive to noise at scales smaller
than o. It is also a regularization parameter which guarantees well-posedness
of the process: Catté et al. [4] have shown that their filter has a unique
solution which is infinitely times differentiable for ¢ > 0. In earlier work [18]
the author has proved that this solution depends continuously on the original
image. He also established a scale-space interpretation for the continuous
Catté equation and its anisotropic generalizations. In addition to invariances
such as the preservation of the average grey value, it has been shown that — it



spite of its contrast-enhancing potential — these equations create smoothing
scale-spaces: the obey a maximum—minimum principle, have a large class of
smoothing Lyapunov functionals, and converge to a constant steady state.

3 AOS Schemes

3.1 Limitations of Explicit and Semi-Implicit Schemes

Let us now consider finite difference approximations to the m-dimensional
Catté equation.

A discrete image can be regarded as a vector f IR, whose components f;,
i € J:={1,...,N} display the grey values at the pixels. Pixel i represents
the location x;, and h; is the grid size in [ direction. We consider discrete
times t; := k7, where k € INg and 7 is the time step size. By u* and g* we
denote approximations to u(x;,tr) and g(Vus(zi,tr)), respectively, where
the gradient is replaced by central differences.

The simplest discretization of the Catté equation with reflecting boundary
conditions is given by
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where A;(i) consist of the two neighbours of pixel i along the direction I
(boundary pixels may have only one neighbour). In vector-matrix notation
this becomes

uk L gk

— =) A (8)
-
=1
where A; describes the diffusive interaction in [ direction. It is easily seen that
A; is a symmetric, irreducible matrix with zero row sums and nonnegative
off-diagonals. Due to the neighbourhood structure, at most 2 off-diagonal
elements per row are nonvanishing. Writing (8) as

S (I+TiAl(uk)) ut 9)
=1

we observe that we can calculate u**! directly (explicitly) from u* without
any matrix inversions. For this reason it is called explicit scheme. Each explicit
iteration step can be performed very fast. Unfortunately, each step has to be
very small as well: one can show [21] that in order to guarantee stability, the
step size has to satisfy

2 2\ 7!
r < (—2+. +—) . (10)
hi



For most practical applications, this restriction requires to use a very high
number of iterations, such that the explicit scheme is rather slow.
Thus, we consider a slightly more complicated discretization next, namely

k1, k m
E 0 = Y awhyat (11)

=1

We observe that this scheme does not give the solution u*+! directly (explic-
itly): It requires to solve a linear system first. For this reason it is called a

linear-implicit (semi-implicit) scheme. The solution u**1 is given by
m -1
uF = (1 -7y A,(uk)) na (12)
=1

This scheme can be shown to be unconditionally stable [21].

However, this does not necessarily imply that it is superior to the explicit
one. For dimensions > 2 there appears a problem: it is not possible to order
the pixels in such a way that in the i-th row all nonvanishing elements of
the system matrix can be found within the positions [i,i —m] to [i,i + m]:
Usually, the matrix reveals a much larger bandwidth. Applying direct algo-
rithms such as Gaussian elimination would destroy the zeros within the band
and would lead to an immense storage and computation effort. Typical itera-
tive algorithms such as the Jacobi, Gaufi—Seidel, SOR or preconditioned CG
method reveal another limitation: their convergence becomes slow for large
T, since this increases the condition number of the system matrix. Thus, in
spite of its absolute stability, the semi-implicit scheme is often not so much
faster than the explicit one. To take full advantage of absolute stability, it is
desirable to find an efficient scheme whose effort is independent of the time
step size.

3.2 AOS Schemes

In order to address the abovementioned problem let us consider a modification
of the semi-implicit scheme (12), namely the additive operator splitting (AOS)
scheme

uhtt = % é (I— mTAl(u’“))_1 u®. (13)

This scheme has several interesting properties:

— Consistency. It has the same first-order Taylor expansion in 7 as the
explicit scheme (9) and the semi-implicit scheme (12): all methods are
O(T + h? + ... + h2)) approximations to the continuous equation. From
this viewpoint, all schemes are consistent to the original equation. One
should not make the mistake to regard the AOS scheme as an algebraically



incorrect reformulation of the semi-implicit scheme: The explicit scheme
is also different from the semi-implicit one, but it approximates the same
continuous diffusion process.

Equal treatment of all axes. Since it is an additive splitting, all coor-
dinate axes are treated in exactly the same manner. This is in contrast
to conventional splitting techniques from the literature [14], which are
multiplicative. In the nonlinear case, the latter ones can produce different
results if the image is rotated by 90 degrees.

Discrete scale-space properties. One can verify [21] that, for every
(1) step size T,

Q") := 1 i (I - mTAl(uk))71 (14)
=1

m

is continuous in its argument, symmetric, all row sums are 1, all entries
are nonnegative, the diagonal elements are positive, and @ is irreducible.
These are the six criteria such that a scheme of type u*t! = Q(u*)u*
creates a discrete diffusion scale-space with the following properties [19]:
(a) Average grey level invariance:
The average grey level p := % > je Ji is not affected by the discrete
diffusion filter: )
NZufz,u YV k € INo. (15)
Jjed
This invariance is required in scale-space based segmentation algo-
rithms [16], and it is useful for applications where the grey value is
linked to physical properties, for instance in medical imaging.
(b) Extremum principle:

min f; <uf <maxf; VielJ, VkeN,. (16)

jEJ JjEJ
This property is much more than a stability result which forbids
under- and overshoots. It also ensures that iso-intensity linking to-
wards the original image is possible, an important causality property
[10].

(¢) Smoothing Lyapunov sequences:
The process is a simplifying, information-reducing transform with re-
spect to many aspects:
The p-norms |[u*||, := (2N, [u¥?)/ and all even central moments
Mo, [u*] == % Zjvzl(u;“ — w)?™ are decreasing in k, and the entropy
S[u*] :== — Zjvzl u¥ Inu¥, a measure of uncertainty and missing in-
formation, is increasing in k (if f; is positive for all j).

(d) Convergence to a constant steady state:

lim v =p Vied (17)
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The discrete scale-space evolution tends to the most global image rep-
resentation that is possible: a constant image with the same average
grey level as f.

— Efficiency. The operators B(u*) := I — m7A;(u*) describe one-dimen-

sional diffusion processes along the x; axes. Under a consecutive pixel
numbering along the direction ! they come down to strictly diagonally
dominant tridiagonal matrices. Then, the most efficient way to calculate
B '(u*)u* is the so-called Thomas algorithm, a Gaussian elimination
algorithm for tridiagonal systems. This algorithm requires only 5N —4
multiplications or divisions, and 3N —3 subtractions.
The Thomas algorithm can be thought of as a recursive filter consisting
of three steps: determination of the filter coefficients, a causal recursion
and an anticausal recursion. If we want to solve Bu = d where B has
diagonal (a1, ...,an), upper diagonal (8i,..., Bny—1) and lower diagonal
(Y1, -y YN—1), then its algorithmic formulation is as follows:

/* step 1: filter coefficients */
mi ‘= O
for 1=1,2,...,N—1:
Mit1 = i1 — Lif;
/* step 2: causal filter */
Y1 = dl
for 1=2,3,...,N:
Yi=di —li_1yi1

/* step 3: anticausal filter */
UnN ‘= yN/mN
for t=N-1,N-2,...,1:

Ui 1= (yz - ﬁz’ui+1)/mi

— Usable for presmoothing. We may also calculate the presmoothing
u, = K, *u by means of an AQS scheme. It is well-known that Gaussian
convolution with standard deviation ¢ is equivalent to linear diffusion
filtering (g = 1) for some time T = ¢2/2.

— Linear complexity. In order to assess the complexity of AOS algo-
rithms, let us consider dimensions m > 2 and focus on terms of order
N (number of pixels). Then it can be shown [21] that one entire Catté
iteration has a memory requirement of 4N x 4 Byte, if the calculations
are performed in single precision. If we use a look-up table for the diffu-
sivity g, then the total computational effort is 11mN multiplications or
divisions, (10m — 1) N additions or subtractions, and N look-ups. This is
less than twice the typical effort needed for an explicit scheme, a rather
low price for gaining absolute stability.



4 Evaluation

Fig. 1. Nonlinear diffusion filtering of a Gaussian-like test image (A = 8, o =
1.5). (a) LEFT: Original image, 2 = (0,101). (b) MipDLE: Explicit scheme, 800
iterations, 7 = 0.25, CPU: 8.97 s. (c) RIGHT: AOS scheme, 40 iterations, 7 = 5,
CPU: 0.84 s.

Fig. 2. Nonlinear diffusion filtering of a medical image. (A = 2, o = 1). (a) LEFT:
Original image, £2 = (0, 255) x (0, 308). (b) MIDDLE: Explicit scheme, 800 iterations,
7 =0.25, CPU: 72.5 s. (c¢) RIGHT: AOS scheme, 40 iterations, 7 = 5, CPU: 6.75 s.

Let us now determine appropriate time step sizes for AOS schemes. For too
large time steps they will still reveal average grey value invariance, stabil-
ity based on an extremum principle, Lyapunov functionals, and convergence
to constant steady state, but they will be less good approximations to the
continuous equation. Thus, we should expect problems with those properties
which a naturally linked to continuous ideas and which can only be satisfied
approximately by discrete schemes: rotational invariance and accuracy.



Table 1. CPU times for one AOS iteration.

image size|CPU time||image size| CPU time
64> 0.0086 s|[16® 0.0159 s
5122 0.711 sl[64® 1.15 s
40962 145 s[|256° 237 s

Figure 1 is used as a test for rotational invariance. It depicts a Gaussian-like
image and its filtered versions. We observe that both the explicit scheme with
7 = 0.25 and the AOS scheme with 7 = 5 give good results. Thus, even for
20 times larger step sizes the AOS scheme does not introduce artefacts with
respect to rotational invariance. Since every AOS iteration is almost twice
as expensive as an explicit one, we finally gain an increase in efficiency by a
factor ten.
Next we consider Figure 2 which depicts the filtering of a brain image. The
situation is similar as in Figure 1: Both the explicit scheme with 7 = 0.25
and the AOS scheme with 7 = 5 are perceptually satisfying and do not differ
very much. For a more detailed study with other time step sizes the reader
is referred to [21].
After these visual inspections we shall evaluate the accuracy and efficiency
more quantitatively. To this end we measure both CPU time and approxima-
tion error for the explicit scheme (9), the semi-implicit scheme (12) and the
AOS scheme (13). Since there is no analytical solution to the Catté equation
known, we have to use a good numerical approximation to a test example as
a standard for comparison. In our case we took the explicit scheme with the
small step size 7 = 0.1 and applied it 2000 times to the test image from Fig. 2.
If v denotes this reference solution, the relative I2 error of an approximation
u is given by

llu —vll2

Tollz (18)

The linear system of the 2-D semi-implicit scheme is solved iteratively by a
GauB—Seidel algorithm. Every second iteration the residue is calculated, and
the process is stopped when the {2 norm of the residue is diminished to 0.01
or 0.1 times its initial value, respectively.

Figure 3 shows the result of the comparison. The depicted curves are created
by running each scheme with different time step sizes. Larger time steps allow
to reach the stopping time 7" = 200 with less CPU effort, but give also rise
to larger approximation errors.

We observe that for very high accuracy requirements the explicit scheme is
most appropriate?. This is at the expense of a high overall computational

2 One can achieve higher accuracies by methods which are of second order in time.
Such high accuracies, however, are not often required in image processing.



effort. On the other hand, even relaxing the accuracy requirements to a rel-
ative 12 error of 1 % does not permit to find a more efficient technique. For
errors between 1 % and 1.7 % the semi-implicit scheme with residue accuracy
a = 0.1 is fastest, and for errors larger than 1.7 % the AOS scheme becomes
rapidly superior. In our previous experiments we have observed that the ac-
curacy of AOS with 7 = 5 appears to be tolerable for many applications. This
corresponds to an 2 error of about 2.2 %. In this case, AOS is almost 2.5
times more efficient than the semi-implicit scheme with @ = 0.1, more than
3.5 times faster than the semi-implicit scheme with o = 0.01, and about 11
times more efficient than the explicit scheme. Although these relations have
been illustrated by one example only, additional experiments have indicated
that these basic relations between explicit, semi-implicit and AOS discretiza-
tions carry over to a large class of images: The accuracy requirements of
many practical problems allow an efficiency gain by one order of magnitude.
All one has to do is to replace the explicit scheme by an AQOS scheme with
20 times larger time step sizes.

Table 1 shows the measured CPU times on a single R10000 processor of an
SGI Challenge XL both for 2-D and 3-D images. Three-dimensional data
sets from medicine with typical sizes such as 256 x 256 x 64 can be processed
in less than one minute per AOS iteration. In many practical applications,
between 1 and 10 iterations are sufficient for the denoising of such data sets.
This means that the filtering often takes less time than the image acquisition
itself. We are currently testing our schemes for the filtering of 3-D ultrasound
images and the preprocessing of 3-D MR data for segmentation. In both cases
first results are encouraging.

5 Conclusions

We have presented absolutely stable additive operator splitting schemes for
the nonlinear diffusion filter of Catté, Lions, Morel, and Coll. These schemes
satisfy all criteria for discrete nonlinear diffusion scale-spaces, and they are
easy to implement in any dimension. Both computational and storage effort
is linear in the number of pixels. Experiments have shown that under realistic
accuracy requirements one can gain an increase of efficiency by a factor 10.
This makes this type of schemes attractive for applications such as medical
3D data sets. Implementations of AOS schemes on parallel architectures and
generalizations to anisotropic diffusion filters with diffusion tensors will be
discussed in forthcoming publications.
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Fig. 3. Tradeoff between efficiency and accuracy of nonlinear diffusion solvers. The
data were calculated on the test image from Fig. 2, size 2 = (0,255) x (0, 308).
Filter parameters: A = 2, o = 1. Stopping time: T' = 200.



